
The Impact of Explanations on Fairness in Human-AI
Decision-Making: Protected vs Proxy Features

Navita Goyal∗
navita@cs.umd.edu

University of Maryland

Connor Baumler∗
baumler@cs.umd.edu
University of Maryland

Tin Nguyen
tintn@cs.umd.edu

University of Maryland

Hal Daumé III
me@hal3.name

University of Maryland & Microsoft Research

ABSTRACT
AI systems have been known to amplify biases in real-world data.
Explanations may help human-AI teams address these biases for
fairer decision-making. Typically, explanations focus on salient
input features. If a model is biased against some protected group,
explanations may include features that demonstrate this bias, but
when biases are realized through proxy features, the relationship
between this proxy feature and the protected one may be less clear
to a human. In this work, we study the effect of the presence of
protected and proxy features on participants’ perception of model
fairness and their ability to improve demographic parity over an AI
alone. Further, we examine how different treatments—explanations,
model bias disclosure and proxy correlation disclosure—affect fair-
ness perception and parity. We find that explanations help people
detect direct but not indirect biases. Additionally, regardless of bias
type, explanations tend to increase agreement with model biases.
Disclosures can help mitigate this effect for indirect biases, improv-
ing both unfairness recognition and decision-making fairness. We
hope that our findings can help guide further research into advanc-
ing explanations in support of fair human-AI decision-making.
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• Human-centered computing → Empirical studies in HCI; •
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1 INTRODUCTION
Improving the fairness and trustworthiness of AI systems is often
cited as a goal of explainable AI (XAI) [e.g., 4, 17, 19, 20, 39, 42, 62].
Research in XAI aims to improve fairness in human-AI decision-
making by providing insights into model predictions, and thereby
allowing humans to understand and correct for model biases. On
the other hand, in the context of human-AI decision-making, previ-
ous work has noted that humans often over-rely on AI predictions,
and explanations can exacerbate this concern [9]. This is especially
troubling if the underlying model contains systematic biases, which
may go unnoticed even when teamed with a human. For the human-
AI team to succeed, the human needs to be able to determine when
to rely on or override potentially biased AI predictions. Previous
work has shown that explanations can help human-AI teams allevi-
ate model biases when those biases depend directly on protected
attributes [18, 54], but little is known in the very common case
that protected attributes are not explicitly included, and rather the
features used for prediction contain proxies thereof (e.g., zip code
for race, length of credit for age, and university attended for gender).
In particular, it may be difficult for humans to identify and resolve
biased model predictions based on the proxy features present in
real-world data, even when explanations are provided.

In this work, we study whether explanations can help people
to identify model biases and to calibrate their reliance on a biased
AI model. We extend work in this space by moving beyond direct
biases that are revealed through the use of protected (i.e., sensitive)
to indirect biases that are revealed through proxy features that may
be less obvious to a human. Further, we examine whether explicitly
disclosing model biases and correlations between the proxy and
protected features can help humans calibrate their trust in a biased
model. Our study aims to evaluate whether explanations can di-
rectly help notice model biases, even when the biases are obfuscated
by the presence of proxy features and whether explanations can
help users correct model biases when they are known to be present,
through the use of bias disclosure and correlation disclosure. We
study the effect of these treatments (explanations, model bias dis-
closure, and proxy correlation disclosure) on the fairness, including
fairness perception and fairness in decision-making (measured by
group-wise parity), as well as the accuracy of the decisions made
by human-AI teams.

We conduct our study in the context of micro-lending outcome
prediction—a setting that entails judging whether a loan applicant
will fulfill their loan request based on profile information of the
applicant (e.g., size of the loan, borrower occupation, etc). For our
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experiments, we use semi-synthetic data where the majority of the
features in an applicant profile as well as the final loan repayment
status comes from the website Prosper.1 To incorporate fairness
considerations, we add to the applicant profiles (binary) gender,
which is a protected feature, and university which, when consider-
ing women’s vs co-ed colleges, can be a proxy for gender. Because
we seek to test whether people can correct for model bias, we in-
tentionally train a biased predictor with outcomes skewed against
applicants with gender assigned as female or university assigned
as a women’s college.

We find that explanations alone can help people notice unfair-
ness in the case of direct bias (through protected features, e.g.,
gender), but not in the case of indirect bias (through proxy features,
e.g., university). Surprisingly, regardless of whether people notice
the unfairness in the AI decisions, explanations lead people to ac-
cept model’s biased decisions leading to less fair decisions. In the
case of direct bias, as participants often recognize clear-cut gender
bias before an explicit disclosure, disclosing model biases does not
further affect participants’ fairness perception. However, in the
case of indirect bias, disclosing both model bias and the correlation
between protected and proxy features or disclosing partial infor-
mation with the addition of explanations significantly improves
participants’ awareness of the unfairness. However, contrary to
explanations alone, this change is not paired with a worsening of
decision-making fairness. Instead, with these disclosures, people
increase their rate of positive predictions for the disadvantaged
group, improving decision-making fairness. Our work aims to high-
light methods to assist users in effectively leveraging explanations,
especially in scenarios where bias may be indirect and not apparent
through explanations alone.

2 BACKGROUND AND RELATEDWORK
Biases in Models and Humans. Bothmodels and humans can be bi-

ased. Humans are known to exhibit many implicit and unconscious
biases [31]. For instance, Bertrand and Mullainathan [6] find that
an applicant with a “White-sounding name” on a resume that is oth-
erwise identical to a resume with an “African-American-sounding
name” is more likely to receive an interview callback.

Models, in turn, can inherit human-like biases (e.g., through
biased data [3, i.a.]), even if this is not intended by the developers.
For instance, Angwin et al. [1] show that training on data collected
from a racist justice system can lead to a model that predicts that
white defendants are less likely to recidivate than their black peers.

This paper explores how humans interact with predictions from
a biased model, wherein AI systems may be able to uncover helpful
patterns in existing data and humans may be able to apply their
contextual understanding and societal awareness to contribute to
correcting these biases within the model.

XAI andDecision-Making. The potentially complementary strengths
and weaknesses of humans and machines raises a question of
whether human-AI teams can overcome the biases that exist in
each individually (e.g., in the case of recidivism prediction [e.g.,
14, 21, 61]). Existing work in explainable AI (XAI) has focused on
providing explanations of the model decisions to help improve the

1https://www.kaggle.com/datasets/yousuf28/prosper-loan

outcomes of human-AI decision-making [2, 8–12, 26, 29, 35, 37, 38,
43, 49, 55, 58, 60, 61, 63, 65]. However, these studies find varying
utility of explanations. Much work has found that explanations can
help humans collaborate more effectively with AI [11, 26, 29, 30, 37,
38, 58, 63], for instance helping them answer trivia questions more
accurately [26] or understanding how the AI system works [13].
Other work has found that explanations can worsen human-AI
performance [2, 8–10, 12, 35, 49, 55, 60, 61] even below the perfor-
mance of the human or AI alone. Further, the utility of explanation
can also vary based on the participant’s level of expertise in the
task [e.g., 61], the participant’s math and logic skills [57], how easy
the explanations are to understand [63], etc.

Beyond explanations, other work has considered how further
transparency can or cannot be beneficial to a human-AI team such
as tutorials [38], disclosing model confidence [51], disclosing model
accuracy [23], and disclosing whether test examples fall into the
scope of model training data [15].

Building upon previous research, this paper investigates the im-
pact of explanations on the behavior of a human-AI team, especially
their influence on the fairness of human-AI decisions in cases where
the underlying model exhibits bias. In addition to explanations, we
draw inspiration from work considering other methods of improv-
ing transparency in human-AI decision-making [e.g., 15, 23, 51],
exploring the implications of disclosing model bias and the correla-
tion between protected and proxy features on the overall fairness
of a human-AI team.

XAI and Fairness. Improving model fairness is often cited as
a potential benefit of XAI systems [4, 17, 19, 20, 39, 42, 62]. XAI
is hoped to help “diagnose the reasons that lead to algorithmic
discrimination” [20], to “highlight an incompleteness” in problem
formalization that leads to unfairness [19], or to show compliance
with fairness requirements [62].

Previous work has examined how explanations affect humans’
perceptions of AI systems’ fairness [7, 18, 40, 50, 54, 64]. Rader
et al. [50] find that participants that are told that an AI system is
being used in decision-making rate the system as significantly less
fair even without any specific system information. Lee et al. [40]
find that explanations of an AI system’s general decision-making
process do not increase perceived fairness while input-output level
explanations of individual outcomes have mixed effects on fair-
ness perceptions. Binns et al. [7] consider how four different styles
of explanations affect justice perception, finding no clear winner
between the approaches. Dodge et al. [18] further study the ex-
planations styles in [7] and find that local explanations (such as
presenting outcomes for similar examples) help surface fairness
discrepancies between different cases while global explanations
(such as describing how each feature influenced the decision for a
given example) increase user confidence in their understanding of
the model and enhance users’ fairness perceptions.

As self-reported perceptions do not always align with observed
behaviors in human-AI decision-making [8, 47], recent work has
begun to expand out of fairness perceptions and into observed
fairness in decision-making [54, 59]. Schoeffer et al. [54] study how
explanations can help users appropriately rely on potentially unfair
AI predictions. They find that explanations that highlight protected
features negatively affect fairness perceptions and that decreases in
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fairness perception are associated with an increase in overrides of
AI predictions, even on examples where this override is detrimental
to the fairness of the human-AI team. Wang et al. [59] study the
effects of the level of model bias and the presence of explanation on
the fairness of human decisions. They find that explanations lead
participants to make more unfair decisions, even when participants
were no longer given access to model predictions or explanations.

Existing work has primarily studied fairness when the model
decision is directly based on a protected feature, like gender or
race. However, models can produce biased outcomes, even without
access to protected features, by relying on proxy features [34, 48].
For instance, a model that has direct access to a “race” feature and
one with access to features like zip code, name, or language spoken
at home could produce similarly biased predictions. In contrast to
existing work considering the relationship between explanations
and fairness perceptions or decision-making fairness, we consider
not only direct bias through a protected feature but also indirect
bias through a proxy feature.

3 RESEARCH QUESTIONS
We study the effect of explanations and disclosures in improving
the fairness perception and fairness of decisions made by human-AI
teams. In our study, model biases can be direct: stemming from
the protected feature (gender), or indirect: stemming from a proxy
feature (university) that is correlated with the protected feature. For
explanation, we consider an input-influence explanation of how
each feature contributed to the AI’s prediction. For disclosures,
participants may be told about the demographic parity (described
in §5.1) of the system (model bias disclosure) and the strength
of correlation between the proxy and protected features (proxy
correlation disclosure; see §4.1). Our study addresses the following
research questions:

RQ1a: Are explanations beneficial to the fairness of a human-AI
team?

RQ2a: Without explanations, does disclosing only model bias or
disclosing model bias and proxy correlation benefit human-
AI fairness?

RQ3a: With explanations, does disclosing only model bias or
disclosing model bias and proxy correlation benefit human-
AI fairness?

RQ4a: Does the joint intervention of adding explanations and
disclosures benefit human-AI fairness?

RQ1-4b: Do the answers to RQ1-4a change when models exhibit
direct (e.g., gender) vs indirect (e.g., university) bias?

We consider the utility of explanations and disclosures under
three lenses: the accuracy of human’s perception of fairness and
the improvement in demographic parity in human-AI decision-
making over AI-only parity, and the decision-making quality
(namely, accuracy, false negative rate (FNR), and false positive rate
(FPR)) of human-AI decisions compared to the AI alone.

Beyond these primary research questions, we also consider:

RQ5: Does dispositional trust (“an individual’s enduring tendency
to trust automation” [32, 44]) affect decision-making and
fairness perceptions when working with models exhibiting
direct or indirect bias?

RQ6: Do explanations and disclosures affect self-reported learned
trust (based on “past experience or the current interaction” [32,
44]) in models exhibiting direct or indirect bias?

In our study, we vary conditions based on the directness of bias,
whether explanations are shown, and the kind of disclosure the
participant receives. We consider six conditions. In the first three
conditions, we do not show participants the explanations. Here, we
consider one Protected condition with bias disclosure, and two
Proxy conditions: one Proxy with correlation disclosure and
one Proxy without correlation disclosure. We similarly consider
three conditions with explanations allocating the biased feature
and disclosure types in the same fashion.

We assess the effect of explanations (RQ1a) by comparing con-
ditions with and without explanations (before any disclosures) in
a between-subjects analysis. We assess the effect of disclosures
without explanations (RQ2a) and the effect of disclosures with ex-
planations (RQ3a) in a within-subject analysis comparing fairness
perceptions and human-AI decision pre- and post-disclosures. This
allows us to study how disclosures may help participants identify
model biases over what is apparent before any disclosures. These
first three effects are summarized in Figure 1. Lastly, we assess the
effect of explanations and disclosures jointly (RQ4a) by compar-
ing conditions in which participants are not shown explanations
pre-disclosures with conditions in which participants are shown
explanations post-disclosures. These experiments are repeated for
protected and proxy conditions to assess the differences in inter-
ventions therein (RQ1-4b).

4 STUDY DESIGN
To answer the research questions posed in §3, we study decisions
made by human-AI teams.2 In this study, the AI teammate is a clas-
sification model trained on partially-synthetic data in the context
of loan prediction. We choose the task of loan prediction from a
micro-lending platform as it is a decision-making task performed
by laypeople which means that crowd-workers are more likely to
have intuitions about the task and the features used in predictions.
In our study, participants are shown either the protected feature of
binary gender3 or the proxy feature of university.

4.1 Procedure
Our study procedure consists of three surveys (S0, S1, S2), one
tutorial and warm-up phase (P0), two task phases (P1, P2), and a
disclosure interlude (D) ordered as shown in Figure 2.

Task Phases. In each task phase (P1, P2), the participant is shown
10 profiles of loan applicants: their features and the overall AI
prediction. Depending on the condition, they may or may not be
shown an explanation of the AI prediction (Figure 3 left and right,
respectively). This profile will, according to the condition, include
either a “gender” or a “university” feature but not both. Participants
are asked to mark on a five-point-scale whether they think the
applicant will complete their loan on time or be late in repaying

2This study design is IRB approved.
3We only consider binary gender in this study. Since each participant sees only a
handful of examples per task phase, it would be difficult to both show the participants
a statistically realistic number of non-binary applicants and get a good sense of how
participants handle anti-trans model bias. We leave this for future work.
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Explanations

Phase 2
Without

Explanations

Effect of
Explanations
Alone (§6.1)

Effect of Disclosure with-
out Explanations (§6.2)

Effect of Disclosure with
Explanations (§6.3)

Figure 1: Summary of primary effects considered in our study. Participants are assigned to either with or without explanations
conditions and then complete the study moving horizontally from phase 1 to phase 2. We then compare the results of different
combinations of phases and explanation conditions to investigate the effects of explanations alone, disclosures without
explanations, and disclosures with explanations.

S0 P0 P1 S1 D P2 S2

Initial survey:
Dispositional
trust

Instructions
and warm-up

New York (6 percent)

Other (25 percent)

Full-time (22 percent)

Other (17 percent)

f (51 percent)

$2000 (9 percentile)

3 2 1 0 1 2 3

BorrowerState

Occupation

EmploymentStatus

ListingCategory

Gender

LoanOriginalAmount

More likely to completeMore likely to be late

(×10)

Survey:
Learned trust
and fairness
perceptions

Disclosures:
model bias
and
(according
to condition)
feature cor-
relation

New York (6 percent)

Other (25 percent)

Full-time (22 percent)

Other (17 percent)

f (51 percent)

$2000 (9 percentile)

3 2 1 0 1 2 3

BorrowerState

Occupation

EmploymentStatus

ListingCategory

Gender

LoanOriginalAmount

More likely to completeMore likely to be late

(×10)

Survey:
Learned trust
and fairness
perceptions

Figure 2: Order of study phases.

their loan (Figure 3, below). Their response to this question serves
as the decision made by the human-AI team.

In each phase, we control the distribution of gender and AI
predictions. The participant sees applications from 2 women who
are predicted as “Complete” and 3 women who are predicted as
“Late” and vice versa for men. (This is true in the underlying data
even if the participant and the model do not directly see each
applicant’s gender.) We hold this ratio constant to avoid any effect
due to the gender distribution or the rejection rate observed by
different participants.

To discourage participants from making decisions without any
consideration of the prediction and (when applicable) explanation,
we ask participants for a free-text justification of why they agreed
or disagreed with the model prediction (or was neutral) after they
have chosen their prediction on selected profiles. We randomly
select one application in each gender + prediction combination for
collecting these free-text justifications. These justifications also
help us qualitatively assess the reasoning behind participants’ deci-
sions. Further, to help filter out low-quality responses, participants
are shown an attention check question, asking them to recall the
previous AI prediction (Figure 9 in the Appendix) after seeing the
first applicant in P1.

Disclosures. Before proceeding to P2, participants may be shown
general explanatory materials or specific disclosures on model bias
and feature correlations. In the model bias disclosure (Figure 4a),
participants are told that the model they saw in P1 had a low demo-
graphic parity (below 80%) (see §5.1 for details about demographic
parity). In the correlation disclosure Figure 4b, participants are
told the correlation between each university and gender in the
model’s training data. The bias disclosure is shown across condi-
tions, whereas correlation disclosure is only shown in the proxy
conditions with correlation disclosure. In the proxy conditions with-
out correlation disclosure, participants are only told that models can
rely on proxy features to make biased predictions, without speci-
fying the correlation between gender and university. This is done
to make participants aware of potential biases without explicitly
disclosing the correlations.

Based on the disclosures seen, participants are asked up to two
comprehension questions (Figure 13 in the Appendix). All are asked
whether the model’s demographic parity was above 80%. Those who
received correlation disclosure are asked to select one university
that is highly associated with women.

Note that participants are not encouraged or primed to consider
fairness explicitly before or during the first phase of the task. We
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New York (6 percent)

Other (25 percent)

Full-time (22 percent)

Other (17 percent)

f (51 percent)

$2000 (9 percentile)

3 2 1 0 1 2 3

BorrowerState

Occupation

EmploymentStatus

ListingCategory

Gender

LoanOriginalAmount

More likely to completeMore likely to be late

New York (6 percent)

Other (25 percent)

Full-time (22 percent)

Other (17 percent)

f (51 percent)

$2000 (9 percentile)

BorrowerState

Occupation

EmploymentStatus

ListingCategory

Gender

LoanOriginalAmount :

:

:

:

:

:

For the applicant profile (above), an AI system has predicted that the applicant will complete the loan on time. The figure
shows the weights assigned to different attributes of the applicant’s profile by the AI system.

Do you think that the applicant will be Late or will Complete the loan on time? ◦ Definitely Late ◦ Probably Late ◦ Neutral
◦ Probably Complete ◦ Definitely Complete

Figure 3: Example profile with explanation from the “protected” model (left) without an explanation (right) and question to
the user (below). The predicted outcome is completing the loan on time. The labels on the left show the name of each feature.
The labels on the right show the value of each feature for the current applicant and the percent/percentile of this value in the
training data. For the explanation, on the x-axis positive blue values correspond to “Complete” predictions and negative red to
“Late”. See Figure 8 in the Appendix for an example profile as shown in the study interface.

only refer to fairness directly after phase 1. This allows us to mea-
sure how well participants can notice, or account for, unfairness
when they aren’t explicitly told to look out for it in phase 1. Subse-
quently, in phase 2, we can measure how participants perceive and
account for unfairness when they know it is a salient concern.

Surveys. The three surveys (S0, S1, S2) aim to capture partici-
pants’ trust and fairness perceptions. All surveys include questions
asking participants to rate their level of agreement with statements
relating to trust (on a scale of 1-5) [33]. In S0, participants are asked
about their trust in AI systems generally, assessing their disposi-
tional trust (Figure 14 in the Appendix). In S1 and S2, participants
are asked about their trust in the system presented in the task
phases, assessing their learned trust in the AI system that they
interact with in the study (Figure 15 in the Appendix).

In the post-task surveys (S1 and S2), alongside trust-related ques-
tions, participants are also asked about their perception of the
fairness of the system they have been interacting with (whether
“the AI system was fair across different genders”). Additionally, par-
ticipants are asked the reason(s) that led to their disagreements
with AI such as the explanations including irrelevant features or
the decisions being unfair towards applicants of different genders.

Tutorial and Warm-up. In P0, participants are acclimatized to
the task with a full tutorial example. They are shown one tutorial
example with a walk-through of the task, the AI decisions and
explanations (when applicable). Then, they are shown warm-up ex-
amples. In the conditions without explanation, they are shown two
examples with no AI prediction or explanation. In the conditions

with explanations, they are first shown a version of this example
with no AI prediction or explanation. This is designed to encourage
participants to properly engage with the features present. Second,
they are shown the same example with the AI feature explana-
tion (still without any prediction) as this setting has been shown
to benefit decision quality and support learning by encouraging
participants to cognitively engage with explanations [27].

4.2 Participants
We recruit 369 participants for our study through the crowdsourc-
ing platform Prolific.4 Each participant is restricted to taking the
study only once. Participation is restricted to US participants, flu-
ent in English. We compensate all participants at an average rate
of US$15 per hour. We discard responses that fail more than one
attention check, leaving a total of 350 participants, with 51, 48, 45
participants in the protected condition, the proxy condition with
correlation disclosure, and the proxy condition without correlation
disclosure without model explanation and 68, 69, 69 participants
in the three respective conditions with model explanations. 42%
of participants self-identified as women, 52% as men, 3% as non-
binary/non-conforming, 3% as transgender, and 1% as a different
gender identity, with 1% of participants opting not to respond.5
19% of participants were between the ages of 18-25, 46% between
25-40, 27% between 40-60, and 6% over the age of 60, with 2% of
participants opting not to respond.

4https://www.prolific.com/
5These do not add up to 100 as participants may have selected multiple options.
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For decision-making tasks, such as microlending outcome
prediction, AI systems can be biased against different
demographic groups, such as gender, race, etc. These
systems may be used to recommend acceptance for
microlending applications (that is, to accept loan request
if the applicant will likely complete the loan on time and
reject it if the applicant will likely be late on the loan).
Unfairness in the AI systems can potentially limit the
access to loans for certain demographic groups.

To avoid discrimination, decision makers should follow
the 80% rule: the acceptance rate for the disadvantaged
group should be within 80% of the acceptance rate for the
advantaged group.

For the 10 applicants in phase 1, the model predicted 60%
of the men would complete the loan on time and 40% of
the women would complete the loan on time. This leads
to the acceptance rate for the women to be about 65% of
that of the men.

(a)

One thing to note is that AI systems can be discrimininatory even based on features that you may not
expect. For example, even if a system does not explicitly know applicants’ gender, it can still discriminate
against applicants who went to women’s colleges.

In the figure below, you can see the associations between different colleges and binary gender. (This is
based on the historical data used to train our AI system.)
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The colleges towards the left (in purple) are more associated with women. On the other hand, the colleges
towards the right (in green) are more associated with men. The values on the figure indicate the strength
of association (the closer to zero, the weaker the association).

(b)

Figure 4: a) Bias disclosure. b) Full correlation disclosure. Proxy “no correlation disclosure” conditions include the top paragraph
but with the example of a hiring system relying on the relationship between zip code and race. See Figure 10 and Figure 11 in
the Appendix for how these disclosures are shown in the study interface.

5 SYSTEM OVERVIEW
We conduct our study using model predictions and explanations
from logistic regression models trained on partially synthetic micro-
lending data.6 Since the participant’s perceptions of how the model
is interacting with the profile features is key to answering our
research questions, we want to avoid any potential confounding
effects from using artificial or Wizard-of-Oz model explanations,
or entirely synthetic data.

The scenario of predicting whether an applicant will complete
microloan repayment on time or will be late is one that our partic-
ipants will likely be sufficiently familiar with to have reasonable
prior intuitions about what features are relevant. A challenge is that
under US law, protected features like gender cannot be considered
when making loan allocation decisions [52] and, therefore, is not
in the dataset that we consider. For this reason, we augment our
data with a synthetic “gender” feature, which we correlate with
outcome to induce model bias. We also generate a proxy feature,
university, which allows us to finely control the level of correlation
between the proxy and gender.

Data. Our loan prediction data comes from a modified set of
microloans from the website Prosper.1 The original dataset contains
79 features of microloans including their status (completed, past
due, etc). We group the loan statuses into “Complete” (including
“Final Payment in Progress”), “Late” (including “Defaulted” and
“Charged-Off”), or “Other” (including “Current” or “Canceld”). We
keep the ∼14000 profiles with “Complete” or “Late” statuses (with a
7:3 train-test split). This grouped loan status is the feature that the
participants and the model will predict. As showing all 79 features
to the participant may be overwhelming, [49] we select 5 features
(the original amount of the loan, the category of the listing, the
applicant’s occupation and employment status, and their state of
residence) that are both important to loan prediction and are likely
interpretable by a layperson.
6https://github.com/ctbaumler/protected-vs-proxy

As described above, we synthetically generate values for our
protected characteristic (binary gender). The existing applicants
are assigned a gender in such a way that the ratio for “Complete”
vs “Late” outcomes is 2:3 for female applicants and vice versa for
male applicants. This simulates historically biased data, which will
cause the model to associate femaleness with being late on loans
and maleness with completing them.

Using the generated “gender” feature, we further generate the
proxy feature (university). We include co-ed and women’s colleges,
setting the joint distribution of gender and university such that
most co-ed universities have relatively balanced gender ratios (See
Figure 4b). For women’s colleges, the distributions reflect real-life
statistics. We choose exclusively liberal arts colleges with similar
US News rankings7 to avoid confounding due to the effect of per-
ceptions of liberal arts vs non-liberal arts schools and perceptions
of school rankings.

Since, in our biased dataset, gender is correlated with outcome
and, of course, the existing features are correlated with outcome,
all features may be weakly correlated with gender. To confirm that
university is the only strong proxy in our data, we compare the cor-
relation of each categorical and continuous feature with gender. For
continuous features (and one-hot features of each university), we
use Pearson’s r coefficient. We find that the women’s colleges have
at least an absolute correlation of 0.273 across Proxy conditions,
whereas the maximum absolute correlation for other continuous
features is 0.014, which is much lower. Similarly, for categorical fea-
tures, we use Cramer’s V, finding that the university feature has at
least an absolute correlation of 0.417 while the maximum absolute
correlation for the remaining categorical features is 0.082, which
is also lower. Overall, we see that university (especially women’s
colleges) has a much stronger correlation with gender than any
other feature shown to the participants.

7https://www.usnews.com/best-colleges/rankings/national-liberal-arts-colleges
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Models. For our AI predictions, we use logistic regression mod-
els as explanations on simple models may be more useful to hu-
mans [37]. We train the models on 14 pre-selected features from the
Prosper dataset (of which participants will only see 5) and, when
applicable, the gender or university feature. These models have
an average accuracy of about 65% when compared to the original
ground-truth values before adding synthetic features. Since we are
using logistic regression, we can create a simple input-influence
explanation of the AIs’ predictions using feature weights. For con-
tinuous features like LoanOriginalAmount, we multiply the nor-
malized feature value by the corresponding feature weight. For
categorical features like EmploymentStatus, we take only the fea-
ture weight corresponding to the feature value (e.g., the weight
of the EmploymentStatus = Full-Time feature). These values are
graphed as in Figure 3 (left).

5.1 Metrics
We evaluate study outcomes based on participants’ perceptions and
decisions. We consider two fairness perception metrics based on
questions in the post-phase surveys, and we consider the decisions
made by the human-AI teams based on one fairness measure—
demographic parity—and three decision quality metrics: accuracy,
false negative rate, and false positive rate.

We measure all metrics in the two task phases across conditions.
We count both “Likely Complete” and “Definitely Complete” as
“Complete” and similarly for “Late”. We count “Neutral” as agree-
ment with the system prediction.

5.1.1 Decision-Making Fairness Measure. We employ demographic
parity [25, i.a.] as a measure of fairness in decision-making, which
captures the independence between protected characteristics and
prediction. There are other measures of fairness [46], however, not
all definitions can be simultaneously satisfied [16, 36]. Demographic
parity has been found to be more understandable to laypeople and
better capture their perception of fairness than competing met-
rics [53, 56]. We can calculate the demographic parity for human-AI
teams in task phases 1 and 2 across conditions as follows.

Parity =
E[𝑌𝑖, 𝑗 = 1 | Gender = female]
E[𝑌𝑖, 𝑗 = 1 | Gender = male]

,

where 𝑌𝑖, 𝑗 is the predicted decision for the applicant by the partic-
ipant 𝑗 . We obtain one demographic parity score in this way for
each participant’s decisions in each phase.

A parity close to 1 means an equal acceptance rate. As the ac-
ceptance rate for the advantaged group increases over the disad-
vantaged group, parity becomes closer to 0. If the acceptance rate
of the disadvantaged group increases above the advantaged group,
then the parity can increase above 1. A parity of less than 4

5 is con-
sidered “evidence of adverse impact” under US Anti-Discrimination
law [24]. In our model bias disclosure, we tell the participants about
this 80% rule and that the model failed this test in phase 1, that is,
the demographic parity of the model is below 80% (Figure 4a).

5.1.2 Fairness PerceptionMeasures. Based on our post-task surveys
(described in §4.1), we calculate two measures of how participants
perceive the degree of model unfairness. First, we consider how
much participants agree with the statement “The AI model was

fair across different genders”. Here, the participant’s fairness rat-
ing is higher when they believe the model is more fair. We also
consider whether participants mark “unfairness” as a reason that
they disagreed with model decisions. Here, the participant’s fair-
ness saliency is higher when they have a greater belief that they
disagreed with the model due to unfairness.

5.1.3 Decision Quality Measures. Measures such as accuracy re-
quire 𝑌𝑖 ’s: a ground-truth “Complete” or “Late” value to compute.
We have access to the ground-truth loan completion status for the
original applicants. However, as we discuss in §5, our study uses
an edited set of applicants with synthetic gender and university
features which are made to be correlated with the outcome. We
estimate the loan completion status for the edited profile from
the ground-truth completion status of the original applicants and
our defined sampling rates of the synthetic features using Bayes’
rule. In turn, we compute an expected accuracy, expected FPR, and
expected FNR using the estimated loan completion status as our
decision-quality measures. See Appendix A for more details.

5.2 Statistical Analyses
To answer our research questions (§3), we perform separate multi-
wayANOVA tests for different treatments (explanations, disclosures
without explanations, and disclosures with explanations) for both
protected and proxy conditions. For each statistical test, we con-
struct a linear model with a fixed effect term for each independent
treatment variable and one fixed effect term representing the par-
ticipant’s dispositional trust, which is calculated by averaging the
scores from the pre-study trust survey. Additionally, in the within
study comparisons (that is, moving from phase 1 to phase 2), we
include the participant ID as a random effect.

The independent treatment variables are determined by the fac-
tors that vary between the effect of interest. For instance, to estimate
the effect of explanation (that is, the vertical arrow in Figure 1), the
treatment variable is the presence of explanations. For the effect of
disclosure (that is, the horizontal arrows in Figure 1), the treatment
variables are: (1) whether only bias disclosure has been shown (i.e.,
is this a phase 2 measurement with no correlation disclosure), and
(2) whether full bias and correlation disclosure has been shown. For
the effect of adding both explanations and disclosures (that is, the
diagonal in Figure 1 going from without explanation and disclo-
sures in phase 1 to with explanation and disclosures in phase 2),
we include all three treatment variables.

In each ANOVA test, we consider the data from the relevant
sections. For instance, to estimate the effect of explanations alone in
the case of direct bias through a protected feature, we only consider
the data in phase 1 of the “protected” conditions (left vertical section
in Figure 1), and similarly for “proxy” conditions.

We fit a separate model for each fairness perception and decision-
making metric as the dependent variable for each of the above
effects. Although the ratio of “Complete” and “Late” model decisions
shown to each participant is kept the same in each phase across
conditions (leading to a constant AI-only parity of∼0.67), the model
accuracy, FPR, and FNR vary across conditions. To account for this
variation, we subtract the model score from the score of the human-
AI team. Similarly, in assessing learned trust measures, we adjust for
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(c) Decision-Making Quality (§5.1.3)

Figure 5: Effect of explanations alone on various metrics when bias stems from usage of a protected vs proxy feature. The
marks show the average and standard error of the given metric across participants in the given condition.

dispositional trust in AI by subtracting the participant’s response
to the corresponding question in the pre-study survey.

In addition to our key metrics detailed in §5.1, we also study
the effect of the treatments on learned trust. We follow the same
procedure as before but with the learned trust measures as the
dependent variable in the ANOVA test. In this case, however, we
adjust participants’ post-phase 1 or post-phase 2 survey responses
based on their baseline responses, and we do not include the overall
dispositional trust term. Lastly, we perform additional ANOVA tests
to analyze the difference between dispositional and learned trust.
For this, we use the participants’ trust ratings in the pre-study sur-
vey and surveys after phase 1 or phase 2 as the dependent variable.
We fit two linear models, one for each phase, testing whether the
phase has a fixed effect on the participants’ trust ratings in different
conditions (with the participant added as a random effect).

We perform Benjamini-Hochberg correction to avoid multiple
testing effect with a false discovery threshold of 0.05 [5]. This leads
to a significance threshold of 0.0175 for the reported results.

6 QUANTITATIVE RESULTS
In this section, we report our findings on the effects of different
interventions on the decision-making and fairness perception met-
rics. We first discuss the primary effects detailed in Figure 1: the
effect of explanations (§6.1), the effect of disclosures without expla-
nations (§6.2) and the effect of disclosures with explanations (§6.3).

Next, we examine the effect of the joint intervention of adding both
explanations and disclosures (§6.4). Lastly, we discuss the effect of
dispositional trust on the decision-making and fairness perception,
the effect of different interventions on participants’ trust, and the
differences in participants’ dispositional trust vs learned trust in
§6.5 (full results in Appendix B).

6.1 Effect of Explanations Alone
First, we consider the effects of explanations alone by comparing
the first phase of with and without explanations conditions with
either type of bias.

In the case of direct bias through a protected feature, we find
that explanations alone have a significant effect on all metrics; how-
ever, the direction of the effect is not consistent. Explanations alone
significantly improve participants’ ability to recognize unfairness
(Figure 5a). Surprisingly, despite participants being more able to
recognize that the model is unfair when shown explanations, when
considering decisions instead of perceptions, we see that expla-
nations significantly decrease gender parity (Figure 5b). Looking
closer, we find that explanations lead to a significantly lower ac-
ceptance rate for female applicants, whereas the acceptance rate
for male applicants does not change significantly (Table 5 in the
Appendix). This decrease in acceptance rates also leads to a signifi-
cant increase in the FNR and a significant decrease in FPR, with an
overall higher accuracy (Figure 5c).
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Figure 6: Effect of disclosures without explanations on various metrics when bias stems from usage of a protected vs proxy
feature. The marks show the average and standard error of the given metric across participants in the given condition.

In the case of indirect bias through a proxy feature, we find
that explanations alone significantly reduce gender parity, similar
to the case of direct bias (Figure 5b). Analogous to direct bias,
this occurs due to a significant decrease in acceptance of female
applicants (Table 5 in the Appendix). Further, explanations also
lead to a significant increase in accuracy in the case of indirect bias.
However, unlike with direct bias, explanations have no significant
effect on fairness perceptions in the case of indirect bias (Figure 5a).

Overall, we find that explanations can help people recognize
unfairness in the case of direct bias but not indirect. This is in line
with our intuition that indirect biases are harder for participants to
notice. However, regardless of fairness perceptions, in line Wang
et al. [59], we find that explanations lead people to accept model
biases leading to less fair decisions. This could be attributed to the
presence of explanations assisting humans in rationalizing AI’s
unfair predictions rather than challenging them.

6.2 Effect of Disclosures without Explanations
We consider the effects of disclosures without explanations by
comparing between phase 1 and phase 2 in without explanations
conditions with either type of bias.

For both direct and indirect bias, we find that disclosing model
bias alone does not have a significant effect on any of the outcome
metrics (gender parity, fairness perception, accuracy, FPR, and FNR).

However, in the case of indirect bias, when we disclose both
the model bias and the relationship between the protected and
proxy feature (i.e., that some universities in the study are women’s
colleges), participants were significantly more likely to report that
the model is unfair or that this unfairness caused them to disagree
with the model’s decisions (Figure 6a). Interestingly, this still does
not translate to fairer decisions—as seen in Figure 6b, the gender
parity does not change significantly on disclosing both model bias
and correlations in the case of indirect bias.

In sum, we find that, interestingly, being explicitly told that the
model is biased does not affect participants’ fairness perception of
the model decisions (in both direct and indirect bias conditions).
In the direct bias condition, this could be because the model is
perceived as unfair even pre-disclosures. In the indirect bias condi-
tion, this might be because disclosures alone, without explanations,
are insufficient for participants to fully acknowledge the bias in
the model’s predictions. But, disclosing both the model bias and
the correlation between protected and proxy features does lead to
participants perceiving the model as less fair in the case of indirect
bias. However, this is not sufficient to improve decision-making
fairness. This may be because, although disclosures assist partici-
pants in recognizing the unfairness of model predictions, they still
lack sufficient information to overturn individual predictions with-
out additional guidance on how the model utilizes the correlation
between protected and proxy features.
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Figure 7: Effect of disclosures with explanations on various metrics when bias stems from usage of a protected vs proxy feature.
The marks show the average and standard error of the given metric across participants in the given condition.

6.3 Effect of Disclosures with Explanations
We consider the effects of disclosures with explanations by compar-
ing between phase 1 and phase 2 in explanations conditions with
either type of bias.

In the case of direct bias through a protected feature, we find
that bias disclosure with explanations has no significant effect on
fairness perceptions (Figure 7a). Unlike with bias disclosure without
explanations (§6.2), we find that bias disclosure with explanations
significantly increases the acceptance rate for female applicants
(participants flip models’ “Late” predictions for female applicants
at a much higher rate), with the acceptance rate for the male appli-
cants unchanged (Table 5 in the Appendix). Bias disclosure with
explanations also results in a significant increase in FPR and a sig-
nificant decrease in FNR, leading to an overall insignificant change
in accuracy (Figure 7c). Even despite a higher acceptance rate for
female applicants, the increase in gender parity is not significant
(Figure 7b), likely due to the normalizing effect of the acceptance
rate of male applicants, which also increases insignificantly.

In the case of indirect bias through a proxy feature, we find that
disclosures with explanations have a positive impact on fairness
both with respect to perceptions and decision-making. Similar to
the without explanations case (§6.2), disclosing both model bias
and the association between gender and university while including
explanations significantly decreases perceived model fairness (Fig-
ure 7a). For fairness rating, this effect is significant even without

the correlation disclosure. Further, disclosing model bias alone, as
well as disclosing model bias along with the correlation between
protected and proxy feature with explanations leads to a significant
increase in gender parity (Figure 7b). This stems from a significantly
higher acceptance rate for female applicants., while the acceptance
rate for male applicants remains unchanged (Table 5 in the Appen-
dix). This also results in a higher FPR (significant) and a lower FNR
(not significant), with an overall drop in accuracy (significant).

In sum, in the case of direct bias, even though bias disclosure
with explanations does not improve recognition of model unfair-
ness significantly (possibly because fairness ratings are low even
pre-disclosures), it does reduce agreement with the model’s bi-
ased decisions, leading to a significantly higher acceptance rate
for female applicants (however, decision-making fairness does not
improve, possibly because of the normalizing effect of acceptance
rate of male applicants, which also increases, albeit insignificantly).
This is in stark contrast with the effect of explanations alone (§6.1),
which improved recognition of unfairness but led to more biased
decisions overall.

Further, in the case of indirect bias, disclosing the model bias and
correlations between protected and proxy feature with explanations
significantly increases both recognition of unfairness and gender
parity in decision-making. We also observe an approximately 1%
drop in accuracy in the case of indirect bias after disclosing model
bias and correlations with explanations (which might be acceptable
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in certain cases). Overall, we conclude that neither explanations
nor bias or correlation disclosures alone are sufficient. We observe
better decision-making fairness outcomes when participants are
not only shown the model explanations but also made aware of the
biases underlying them.

6.4 Effect of Joint Intervention
We have seen that explanations alone decrease decision-making
fairness, while disclosures with explanations can, in the case of
indirect bias, have the opposite effect. Here, we consider the effect
of both adding explanations and giving disclosures over including
neither (i.e., comparing phase 1 without explanations to phase 2
with explanations).

We find that, for decision-making metrics (accuracy, FPR, and
FNR), the effect of joint intervention is never significant (Table 6
in the Appendix). For fairness perception metrics, since the effect
of explanations alone and disclosures with explanations pointed
in the same direction, as expected, adding both explanations and
disclosures also significantly improves recognition of unfairness. In
sum, the joint intervention of including both explanations and dis-
closures (over including neither) helps participants in recognizing
model biases but not in correcting them. This is a curious finding
as we would expect that giving participants full information about
bias in the model and also an explanation of individual prediction
would lead to more fair decisions. We believe that this indicates
that even though disclosures help undo some of the over-reliance
on the model’s biased decisions stemming from the inclusion of ex-
planations, users still tend to be more accepting of model decisions
with explanations than without.

6.5 Effects of Additional Variables
Beyond the primary effects considered in our study, we also in-
vestigate the effect of participants’ dispositional trust levels on
decisions and perceptions (RQ5) and the effect of our interventions
on learned trust (RQ6). We include a detailed discussion of these
results in Appendix B, along with a discussion of the differences be-
tween dispositional and learned trust and the relationship between
a participant’s gender and their decisions and perceptions.

Does dispositional trust affect decision-making and fairness per-
ception measures? As discussed in §5.2, we include a measurement
of a participant’s dispositional trust in AI as a fixed effect in our
linear models. The effects and their significance were generally
not consistent across models. Overall, we find that dispositional
trust does not affect fairness perception in the case of direct bias,
but it indeed leads to a significantly higher perceived fairness in
the case of indirect bias, that is, participants with higher levels of
dispositional trust were also less able to recognize indirect bias.
Additionally, we find higher dispositional trust in AI was associated
with making less fair decisions by relying more on the biased model.
This is in line with previous findings that a person’s dispositional
trust significantly affects their reliance on a machine [45]. However,
we find that this effect is alleviated after including disclosures, both
in the case of direct and indirect model bias.

Do explanations and disclosures affect self-reported learned trust?
In addition to the fairness perception, decision-making fairness

and quality measures discussed above, we additionally consider the
effect of the explanation and disclosure interventions on learned
trust when compared to dispositional trust in AI generally. We find
that our interventions generally have no effect on learned trust
ratings in models exhibiting direct bias, except for explanations
leading to significantly lowered feelings that the AI system works
well. When model biases are indirect, full disclosures with explana-
tions (or sometimes full disclosures without explanations) lead to a
drop in learned trust. Lastly, explanations alone and full disclosures
alone also lead to an increase in the predictability of the underlying
model in the case of indirect bias but not in the case of direct bias.

7 QUALITATIVE RESULTS
As described in §4.1, for a selected set of applicants in each phase,
participants were asked to write a free text justification for why
they agreed or disagreed with AI (or marked it as “neutral”) after
marking their agreement and confidence. In addition to encouraging
careful thinking, this also helps us gauge the kinds of reasoning
participants employ in their decision-making.

As the main goal of our study is to understand how humans
interact with AI decisions when the AI is biased, we primarily focus
our qualitative analysis on rationales concerning biases. To analyze
how participants perceive and use (or discard) the biased feature
(gender or university), we consider justifications that directly refer-
ence the protected (gender) or proxy feature (university) by using
a set of keywords for both. We started with an initial keyword
set (e.g., “gender”, “female”, “university”) and, based on reading a
subset of the justifications, expanded to include spelling variations
(e.g., “skool” and “collage”) and other topically relevant words (e.g.,
abbreviated names of schools). We discuss our qualitative findings
on justifications involving the protected feature in §7.1 and jus-
tifications involving the proxy feature in §7.2. Lastly, we discuss
additional observations indicating over-reliance based on a random
sample of justifications in §7.3.

7.1 Justification Involving Protected Feature
Here, we analyze justifications that explicitly mention gender in
the direct bias conditions. In these justifications, we assess how
participants incorporate gender into their judgment of AI predic-
tions or when making their own predictions. Pre-disclosure, when
explanations are not provided, participants rarely discuss gender
as a salient part of their justification. However, when explanations
are provided, participants often mention trying to “ignore gender”
when making their decision. Notably, participants who mentioned
gender in predictions about female applicants tended to make “Com-
plete” or “Neutral” predictions. Thus, even though explanations
significantly decreased gender parity (§6.1) overall, they appear to
help participants correct model biases in some cases.

Post-bias disclosure, justifications mentioning gender still pre-
dominantly appear in the conditionwith explanations. Nevertheless,
some participants, even without explanations, mention gender bias
and flip “Late” predictions for female applicants. For instance, one
participant explained overriding such a prediction based on ob-
serving a male applicant with the same occupation predicted as
“Complete”. In the condition with explanations, many participants
asserted that “gender should not be a deciding factor” and ignored
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gender when making their prediction. Some participants, when
supporting a "Late" prediction for a female applicant, clarify that
their decision was based on other features (“The large amount of
negatives aside from gender still point towards being late.”). How-
ever, even in the case of direct bias with both explanations and
bias disclosure, some participants still align with model biases. For
example, one participant agreed with a “Complete” prediction of a
male applicant “[b]ecause according to AI, male gender is more likely
to complete loan...”

7.2 Justifications Involving Proxy Feature
Here, we analyze justifications that explicitly mention universi-
ties in the indirect bias conditions and assess how participants
incorporate universities in their judgments. Pre-disclosures, some
participants mentioned that attending college generally increases
the likelihood of repayment, regardless of the specific school (for
example, mentioning that an applicant is “college-educated” and
predicting “Complete”). However, other participants factor in the
specific college when deciding to accept or reject an applicant. In
conditions without explanations, we see evidence of participants
relying on their own judgment of school quality. For instance, par-
ticipants mention that they have “never heard of Kenyon College,” or
that a co-ed school in the application “...is not a particularly presti-
gious university” (even though in the underlying model, attending a
co-ed school is counted as a positive). In contrast, with explanations
provided, we instead see examples of participants aligning their
evaluation of a school with the model’s biases. For instance, on
applicants from women’s colleges, participants claimed “The appli-
cant didn’t go to a good college,” or “...College history was a major
contributing factor to being late on loan.” On applications from co-ed
schools, participants claimed that the applicant “...attended a good
university,” or “the university is listed as a good one.” This supports
our quantitative finding that explanations alone lead participants
to align with model biases (§6.1).

After bias disclosure alone (and especially without explanations),
mentions of universities were quite sparse. Some participants men-
tioned that the university feature is given excessive weight (“I just
find it hilarious that the borrower’s state and university is such a huge
factor.”) but may not recognize this as indirect bias. One participant,
although aware that Bryn Mawr is a women’s college, expressed
uncertainty about identifying biased predictions without direct
access to protected features: “After learning more about possible dis-
criminatory predictions on the AI’s part... I’m specifically concerned
about gender and race... but don’t quite know how to discern that
from these charts... This applicant profile gave me pause because I
*think* Bryn Mawr College is an all-women’s college.”

After full bias and correlation disclosure, the “university” feature
appears frequently in justifications. Here, participants continue
to highlight the excessive weight assigned to the university in
explanations, noting particularly unwarranted negative weight on
women’s colleges (e.g., “While the system said late, I thought this
was unfair because it placed a strong negative value on the college,
which might be a women’s college.”). Although some participants use
this university bias as a justification for flipping model predictions,
many acknowledge the bias and either make a neutral prediction
or concur with predictions of women being late in repayment.

Additionally, we observed that some participants struggled to recall
which universities were co-ed, which may have limited their ability
to intervene and correct model biases.

7.3 Justifications Indicating Over-reliance
In addition to the positive examples of explanations and disclo-
sures helping participants notice and correct model biases, we also
observe instances where decisions were solely based on the AI pre-
diction or the corresponding explanations, regardless of disclosures.
For example, even after bias disclosure in a direct bias condition,
a participant agreed with a prediction of a female applicant being
“Late” saying that “They seem to have more negatives than positives.”
Similarly, after bias and correlation disclosures in an indirect bias
condition, a participant changed the prediction for an applicant
from a women’s college from “Complete” to “Late,” providing a sim-
ilar justification. This indicates some participants persist in using
explanations containing known biases, since for these applicants,
ignoring the biased features (gender and university, respectively)
would have resulted in the positives outweighing the negatives.

We also find instances of over-trust in AI even after being told
that AI is biased such as “I have no reason to disagree with the AI, if
the AI is discriminating it probably has a good reason to,” or “An AI is
usually better than a professional let alone an amateur like me.” This
indicates that even despite explanations and disclosures, there is
room for improvement in educating and training humans to avoid
unwarranted trust in AI systems and promote fair decision-making.

8 DISCUSSION AND LIMITATIONS
In this work, we studied the effect of explanations and disclosures
on fairness perceptions and decision-making when humans are pro-
vided predictions frommodels exhibiting direct or indirect bias. Our
findings are summarized in Table 1. Regardless of intervention, we
consistently observed that human-AI teams made fairer decisions
than the AI alone. We found that explanations alone significantly
improved participants’ ability to notice unfairness in the case of
direct bias only. However, explanations led participants to be more
influenced by model biases, whether they noticed these biases or
not. Disclosures were an effective tool for helping users recognize
unfairness in the case of indirect bias, especially with the help of
explanations. And we saw that this increased recognition of bias
was paired with fairer human-AI decisions, showing that disclo-
sures helped participants understand when and how to intervene
on model decisions to produce fairer outcomes.

However, we found that the joint intervention of including both
explanations and disclosures (over including neither) was only ef-
fective in helping participants recognize model bias, not correct it.
If the main objective is to help users notice direct model biases, we
recommend including explanations, and if it is to help users notice
indirect model bias, we recommend including explanations and dis-
closing both model bias and the correlations between protected and
proxy features. But if the main objective is to help the human-AI
team produce fairer outcomes, we did not find including explana-
tions with disclosures to be an effective intervention. However, if
explanations are to be used, then disclosures may help contextu-
alize explanations and the potential biases, especially when these
biases are indirect. While in a perfect world, such known biases
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Explanations
Only

Disclosures Without
Explanations

Disclosures With
Explanations

Joint
Intervention

Prot Prox Prot
BD

Prox
BD

Prox
BD+CD

Prot
BD

Prox
BD

Prox
BD+CD

Prot
BD

Prox
BD

Prox
BD+CD

Fairness Rating ↓ · · · ↓ · ↓ ↓ ↓ ↓ ↓Fairness
Perception Fairness Saliency ↑ · · · ↑ · · ↑ ↑ · ↑
DM Fairness Gender Parity ↓ ↓ · · · · ↑ ↑ · · ·

Accuracy ↑ ↑ · · ↓ · ↓ ↓ · · ·
FNR ↑ · · · · ↓ · · · · ·DM Quality
FPR ↓ ↑ · · ↑ ↑ ↑ ↑ · · ·

Table 1: Summary of our main results. Arrows represent significant effects and point in the direction of the change. “BD” and
“CD” represent bias and correlation disclosures, respectively.

could be addressed in the model itself instead of relying on human
intervention, this may not always be possible. In many cases, we
may have limited access to the underlying model (e.g., only having
API access) or may not be able to non-superficially “debias” it [28].
Disclosures may help uncover these biases to humans, possibly
leading to fairer human-AI decisions.

A key limitation of work is that since we show our participants
partially-synthetic loan data, we cannot directly rely on the existing
ground truth. Instead, we calculate the expectation of ground-truth
based metrics (accuracy, FNR, and FPR) which means that there
are applicants for which neither choice is very likely to be “correct”
(i.e., both 𝑃 (𝑌𝑖 = 1) and 𝑃 (𝑌𝑖 = 0) are close to 0.5). We handle
this in part by adjusting for the baseline AI-only scores; however,
using a fully non-synthetic dataset and original ground truth values
may lead to cleaner results. This lack of a true ground-truth, in
part, led us to use demographic parity which has been argued to be
insufficient as a notion of fairness [22].

There is potential concern about the use of a loan prediction
task since the participants are not financial experts. As we discuss
in §5, participants are shown a subset of the original Prosper fea-
tures that we believe are relatively intuitive without more than a
commonsense understanding of lending (e.g., size of the loan being
requested and employment status). We also hope that a task mimick-
ing the loan approval process is high-stakes enough to encourage
more care from the crowd-workers in their decision-making. How-
ever, more work is needed to study how our findings generalize to
settings with varied task stakes or domain expertise.

Another limitation is that our study design forces participants
to make decisions one at a time, without seeing the entire pool of
applicants. It is our hope that the percent/percentile information
given for each feature gave participants a better sense of how each
applicant’s profile compared to the general pool, even without see-
ing many profiles. However, we recognize that it may be difficult for
participants to conceptualize what a “strong” or “weak” candidate
looks like under this design. This may make it more difficult for
participants who, for example, wish to increase the acceptance rate
of women in phase 2 to decide which female applicants are “most
deserving” of having their prediction flipped to “Complete”.

Despite these limitations, our work provides insights into the
effect of explanations on fairness in human-AI decision-making, es-
pecially when the biases are indirect (through a proxy features). We

conclude that neither explanations nor disclosures alone improve
the fairness of decisions made by a human-AI team. Our findings
serve to caution the wider community from treating explanations
as a foolproof solution to human-AI collaborative decision-making:
explanations may not always make model biases clear and may
make people more prone to align with model biases, leading to less
fair decisions. When people are repeatedly exposed to explanations
that justify or rationalize biased predictions, they may begin to
accept these biases as valid or even desirable, rather than critically
questioning and challenging them. We highlight that explanations
and disclosures in conjunction may be helpful to some extent. How-
ever, more work is needed to further examine how best to aid
humans not only in identifying indirect model biases, but also in
systematically correcting these biases.
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A DERIVING METRICS USING
PROBABILISTIC GROUND TRUTH

Here, we consider in more detail how to calculate the probability
of ground-truth completion and the expected value of the decision
quality metrics.

A.1 Probability of Loan Completion
In our study, each applicant 𝑖 is only evaluated by a single partic-
ipant 𝑗 in a given condition, and each participant 𝑗 evaluates 20
applicants across the two phases (§4.1). We represent the set of
observed decisions as 𝑆 = {(𝑖, 𝑗) | participant 𝑗 sees applicant 𝑖}.
For the 𝑖th applicant, we want to know the probability that the true
outcome should be complete, that is, 𝑃 (𝑌𝑖 = 1). Let 𝒙𝑖 be the set
of original features of the 𝑖𝑡ℎ applicant’s and 𝑥∗

𝑖
be the assigned

(synthetic) gender or university. Note, we drop the subscript 𝑖 when
referring to a general applicant. We can write the probability of the
true outcome for applicant with features (𝒙, 𝑥∗) as

𝑃 (𝑌 = 1 | 𝒙, 𝑥∗) = 𝑃 (𝑥∗ | 𝑌 = 1, 𝒙)𝑃 (𝑌 = 1 | 𝒙)
𝑃 (𝑥∗ | 𝒙)

Since we assign the values of the protected or proxy feature 𝑥∗ based
solely on the ground-truth outcome, we can assume that 𝑥∗ and 𝒙
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are independent given 𝑦. Thus, 𝑃 (𝑥∗ | 𝑌 = 1, 𝒙) = 𝑃 (𝑥∗ | 𝑌 = 1).

𝑃 (𝑌 = 1 | 𝒙, 𝑥∗) = 𝑃 (𝑥∗ | 𝑌 = 1)𝑃 (𝑌 = 1 | 𝒙)
𝑃 (𝑥∗ | 𝒙)

=
𝑃 (𝑌 = 1 | 𝑥∗)𝑃 (𝑥∗)

𝑃 (𝑌 = 1)
𝑃 (𝑌 = 1 | 𝒙)
𝑃 (𝑥∗ | 𝒙)

Then, removing any terms not containing 𝑌 , which can be normal-
ized away, we are left with

𝑃 (𝑌 = 1 | 𝒙, 𝑥∗) = 𝑃 (𝑌 = 1 | 𝑥∗)𝑃 (𝑌 = 1 | 𝒙)
𝑃 (𝑌 = 1)

In the protected case, we know the probability of acceptance given
the synthetic feature (that is, 𝑃 (𝑌 = 1 | 𝑥∗)) based on our selected
60/40 male/female acceptance ratio. In the proxy case, we estimate
the probability of acceptance given the university using the joint
distribution of gender and university and the probability of accep-
tance given gender. For each applicant, we estimate the probability
of the applicant completing their loan 𝑃 (𝑌 = 1 | 𝒙) based on only
the non-synthetic features (𝒙) using a linear regression model that
does not have access to the synthetic information. Finally, we can
calculate 𝑃 (𝑌 = 1) based on the rate of ground-truth acceptances
in the original data.

A.2 Expected Accuracy, FNR, and FPR
Using our calculated probability of the ground-truth acceptance of
a given applicant (with original features 𝒙 and synthetic feature 𝑥∗),
we can calculate an expected accuracy, FNR, and FPR for a given
human-AI team. For example, for expected FNR, we consider the
expected number of false negatives over the expected number of
ground truth positives.

Expected FNR =
E[# False Negatives]
E[# Positives]

Let 𝑦𝑖, 𝑗 be the human-AI decision for the 𝑖𝑡ℎ applicant by the 𝑗𝑡ℎ

participant, such that𝑦𝑖, 𝑗 is 1 if the human-AI decision is “Complete”
and 0 if it is “Late”. We can write the expected number of false neg-
atives E[# False Negatives] as ∑(𝑖, 𝑗 ) ∈𝑆 (1 − 𝑦𝑖, 𝑗 )𝑃 (𝑌𝑖 = 1|𝒙𝑖 , 𝑥∗𝑖 ),
that is, the probability of the ground truth label for the 𝑖𝑡ℎ appli-
cant being 1 but the human-AI decision for the same applicant
being 0. Similarly, we can write the expected value of positives
E[# Positives] as ∑𝑖 𝑃 (𝑌𝑖 = 1|𝒙𝑖 , 𝑥∗𝑖 ). Thus, we can write

Expected FNR =

∑
(𝑖, 𝑗 ) ∈𝑆 𝑃 (𝑌𝑖 = 1|𝒙𝑖 , 𝑥∗𝑖 ) × (1 − 𝑦𝑖, 𝑗 )∑

𝑖 𝑃 (𝑌𝑖 = 1|𝒙𝑖 , 𝑥∗𝑖 )
.

Similarly, we can calculate the expected FPR and Accuracy.

Expected FPR =
E[# False Positives]
E[# Negatives]

=

∑
(𝑖, 𝑗 ) ∈𝑆 𝑃 (𝑌𝑖 = 0|𝒙𝑖 , 𝑥∗𝑖 ) × 𝑦𝑖, 𝑗∑

𝑖 𝑃 (𝑌𝑖 = 0|𝒙𝑖 , 𝑥∗𝑖 )

Expected Accuracy =
E[# True Positives + # True Negatives]

E[# Samples]
=

1
| 𝑆 |

∑︁
(𝑖, 𝑗 ) ∈𝑆

E[𝑇𝑃𝑖, 𝑗 +𝑇𝑁𝑖, 𝑗 ]

=
1

| 𝑆 |
∑︁

(𝑖, 𝑗 ) ∈𝑆

(
𝑃 (𝑌𝑖 = 1|𝒙𝑖 , 𝑥∗𝑖 ) × 𝑦𝑖, 𝑗

)
+ (

𝑃 (𝑌𝑖 = 0|𝒙𝑖 , 𝑥∗𝑖 ) × (1 − 𝑦𝑖, 𝑗 )
)

B EXTENDED RESULTS
In this section, we report additional results regarding dispositional
trust, learned trust, and participant gender. We additionally include
a full table detailing the primary effects considered in the study
(Table 6) as well as the effects of our interventions on reliance split
by applicant gender (Table 5).

B.1 Does dispositional trust affect
decision-making and fairness perception
measures?

As discussed in section 5.2, we include a measurement of a par-
ticipant’s dispositional trust in AI as a fixed effect in our linear
models. The effects and their significance was generally not consis-
tent across models (See Table 2).

We consistently find that dispositional trust has no significant
impact on fairness ratings in the protected conditions, while it
significantly increases fairness ratings in the proxy conditions. In
other words, when biases are direct, people are equally able to
notice model biases even when they tend to trust AI in general;
however, when biases are indirect, people with higher dispositional
trust in AI are less likely to believe that the model is unfair. For par-
ticipants’ fairness saliency, we see that there is never a significant
effect in the case of direct bias, but higher dispositional trust signif-
icantly decreased the rate of disagreement only when considering
disclosures without explanations.

We also find that, under models that consider the effect of expla-
nations and disclosures with explanations, increases dispositional
trust in AI significantly increased FPR and decreased FNR in the
proxy conditions only. This is likely due to participants with higher
trust in AI being more influenced by subtle indirect biases lead-
ing to lower acceptance rates for female applicants. This is also
supported by the models measuring the effect of explanations on
gender parity. Here, we see that an increased dispositional trust in
AI significantly decreased parity under both types of bias.

Overall, people with a greater dispositional trust in AI tended to
make more unfair decisions (when working with a biased model)
and were less likely to notice indirect bias.
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Metric Feature Model 𝐹 𝑝 Coef Std Error

Expl 𝐹 (1, 115) = 4.07 0.0459 1.31 0.592
Disclosure 𝐹 (1, 49) = 5.86 0.0192 1.70 0.700protected
Disclosure with Explanation 𝐹 (1, 66) = 1.6 0.2104 0.89 0.702
Expl 𝐹 (1, 227) = 32.7 0.0000 ∗ 1.54 0.280
Disclosure 𝐹 (1, 91) = 25.8 0.0000 ∗ 1.69 0.332

Fairness
Rating

proxy
Disclosure with Explanation 𝐹 (1, 136) = 10.11 0.0018 ∗ 1.13 0.355

Expl 𝐹 (1, 115) = 0.87 0.3540 −0.31 0.284
Disclosure 𝐹 (1, 49) = 0.18 0.6737 −0.15 0.354protected
Disclosure with Explanation 𝐹 (1, 66) = 0.85 0.3598 −0.30 0.331
Expl 𝐹 (1, 227) = 2.52 0.1135 −0.12 0.087
Disclosure 𝐹 (1, 91) = 9.11 0.0033 ∗ −0.45 0.150

Fairness
Saliency

proxy
Disclosure with Explanation 𝐹 (1, 136) = 0.01 0.9361 −0.01 0.125

Expl 𝐹 (1, 115) = 6.25 0.0138 ∗ −0.35 0.149
Disclosure 𝐹 (1, 99) = 0.53 0.4681 −0.15 0.208protected
Disclosure with Explanation 𝐹 (1, 133) = 3.27 0.0730 −0.28 0.153
Expl 𝐹 (1, 227) = 5.73 0.0175 ∗ −0.22 0.112
Disclosure 𝐹 (1, 182) = 0.31 0.5778 0.07 0.128

Parity

proxy
Disclosure with Explanation 𝐹 (1, 135) = 3.55 0.0618 −0.19 0.100

Expl 𝐹 (1, 115) = 2.09 0.1511 0.04 0.031
Disclosure 𝐹 (1, 49) = 4.71 0.0349 0.10 0.044protected
Disclosure with Explanation 𝐹 (1, 66) = 0.23 0.6366 0.02 0.033
Expl 𝐹 (1, 227) = 2.97 0.0863 0.02 0.018
Disclosure 𝐹 (1, 91) = 1.73 0.1917 0.03 0.026

Accuracy

proxy
Disclosure with Explanation 𝐹 (1, 136) = 2.22 0.1382 0.03 0.019

Expl 𝐹 (1, 115) = 0.06 0.8126 0.01 0.096
Disclosure 𝐹 (1, 49) = 0.01 0.9113 −0.01 0.125protected
Disclosure with Explanation 𝐹 (1, 66) = 0.53 0.4674 0.08 0.104
Expl 𝐹 (1, 227) = 8.8 0.0033 ∗ 0.14 0.054
Disclosure 𝐹 (1, 91) = 0.6 0.4400 0.06 0.072

FNR

proxy
Disclosure with Explanation 𝐹 (1, 136) = 9.69 0.0023 ∗ 0.20 0.063

Expl 𝐹 (1, 115) = 0.7 0.4051 −0.08 0.107
Disclosure 𝐹 (1, 49) = 0.73 0.3983 −0.12 0.144protected
Disclosure with Explanation 𝐹 (1, 66) = 0.59 0.4458 −0.10 0.125
Expl 𝐹 (1, 227) = 9.44 0.0024 ∗ −0.16 0.059
Disclosure 𝐹 (1, 91) = 2.07 0.1533 −0.12 0.085

FPR

proxy
Disclosure with Explanation 𝐹 (1, 136) = 8.79 0.0036 ∗ −0.22 0.073

Table 2: Effects of dispositional trust in AI on different outcome metrics (Perception, Parity, Accuracy, FPR, and FNR).

B.2 Do explanations and disclosures affect
learned trust?

In this section, we discuss the effect of our interventions—explanations,
disclosures without explanations, and disclosures with explanations
(Figure 1)—on learned trust over dispositional trust in AI generally.
We perform statistical tests similar to the ones described in §5.2.
We consider the different trust measures as the dependent variable
and the treatment as the fixed effect term. We also control for the
dispositional trust level as a fixed effect.

As seen in Table 6, we find that our treatments generally have
no effect on trust ratings in models exhibiting direct bias, except
for explanations alone leading to significantly lowered feelings that
the AI system works well. In the case of indirect bias, we often see
that full disclosure with explanations (and sometimes also full dis-
closure without explanations or bias disclosure with explanations)
has a significant effect on learned trust. These effects demonstrate

lowered feelings that the AI system works well as well as decreased
feelings that the AI system can perform as well as an untrained
human, decreased confidence in the system, decreased feelings of
safety when relying on the system, and increased wariness of the
AI system.

We also find that explanations alone significantly increase partic-
ipant’s perception of model predictability in the proxy conditions
but not the protected conditions. Without explanations, full bias
and correlation disclosure also significantly increased predictability.
With explanations, however, disclosures do not increase predictabil-
ity, likely due to high predictability ratings even with explanations
alone. This is to say that our models are already seen as relatively
predictable when biases are direct, but when biases are indirect,
explanations or disclosure of model bias and the model’s usage of
the university feature help make the model more predictable.
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better confidence predictable safe wary works well

Feature Phase Expl? Disclosure sig coef sig coef sig coef sig coef sig coef sig coef

1 - - ∗ −0.61 ∗ −0.43 ∗ −0.51 ∗ −0.29 0.04 ∗ −0.43
1 ✓ - ∗ −0.93 ∗ −0.66 ∗ −0.37 −0.26 0.10 ∗ −0.81
2 - Bias ∗ −0.33 ∗ −0.23 ∗ −0.25 ∗ −0.20 0.02 ∗ −0.28

Pr
ot
ec
te
d

2 ✓ Bias ∗ −0.51 ∗ −0.38 ∗ −0.19 ∗ −0.22 0.12 ∗ −0.48
1 - - ∗ −0.55 ∗ −0.34 ∗ −0.68 ∗ −0.22 −0.15 ∗ −0.32
1 ✓ - ∗ −0.54 −0.19 0.01 0.03 −0.14 ∗ −0.29
2 - Bias ∗ −0.39 ∗ −0.21 ∗ −0.29 −0.05 0.02 ∗ −0.25
2 - Full ∗ −0.31 ∗ −0.28 ∗ −0.23 −0.13 0.01 ∗ −0.37
2 ✓ Bias ∗ −0.30 ∗ −0.29 0.02 −0.09 0.06 ∗ −0.30

Pr
ox
y

2 ✓ Full ∗ −0.36 ∗ −0.20 −0.04 −0.08 0.00 ∗ −0.26
Table 3: Comparison of dispositional trust vs learned trust in varied conditions and phases.

B.3 Does dispositional trust differ from learned
trust?

In the previous section, we discussed how interventions affected
learned trust when controlling for baseline dispositional trust. Here,
we study whether there is a significant difference between dispo-
sitional trust and learned trust in the biased models across the
questions described in §4.1. These results are shown in Table 3.

We find that participants usually thought our model worked
worse than AI does generally, that it inspired less confidence, and
was less predictable. Participants also regarded our AI system as
less safe than AI in general, but this is primarily true only in the
case of direct bias. Surprisingly, participants did not consider our AI
systems to be less safe than general in phase 1 when theywere given
explanations (which would have directly indicated that the system
used gender as a feature to determine loan outcomes). Participants’
wariness of the biased models was not significantly different from
their baseline wariness in AI.

B.4 Does participant gender correlate with
decision-making and fairness perception
measures?

Because our models exhibits gender bias, it stands to reason that
participants of varied gender may react differently to the mod-
els. Namely, non-male participants may be more sensitive to bias
against women. Using point-biserial correlation tests [41], we con-
sider whether gender8 correlates with our fairness perception,
decision-making fairness, and decision-making quality metrics as
well as the rate of “Complete” predictions for female and male
applicants directly.

We find no significant correlations between gender and behav-
ior or perceptions in our task (See Table 4). However, we do find
marginally significant correlations with acceptance rate for female
applicants, FPR, and accuracy. This shows theremay be aweak trend
in male participants accepting fewer female candidates (𝑝 = 0.05),
leading to a lower FPR and higher accuracy.

8Here, we use a binary indicator variable of whether a participant’s self-reported
gender included the “male” checkbox. We did not have enough non-binary or gender
non-conforming participants to analyze separately.

Metric Coefficient 𝑝

Fairness Rating 0.045 0.403Fairness Perception Fairness Saliency −0.026 0.624

DM Fairness Gender Parity −0.058 0.280

Accuracy 0.094 0.079
FNR 0.083 0.120DM Quality
FPR −0.107 0.045
Female Applicants −0.102 0.057Acceptance Rate Male Applicants −0.068 0.204

Table 4: Correlation between participants self-describing as
male and various performance metrics.

Female Male
Feature Intervention sig coef sig coef

+Expl * −0.13 −0.04
+Bias Disclosure 0.06 0.00Protected
+Bias Disclosure with Expl * 0.08 0.02
+Expl * −0.07 0.00
+Bias Disclosure 0.03 0.01
+Bias and Corr Disclosure 0.08 0.01
+Bias Disclosure with Expl * 0.07 0.00
+Bias and Corr

Proxy

Disclosure with Expl * 0.10 −0.03
Table 5: Effect of interventions on acceptance rate for female
and male applicants across conditions and phases.
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Metric Feature Effect 𝐹 𝑝 Coef Std Error
+Expl 𝐹 (1, 115) = 26.33 0.0000 ∗ −0.89 0.174
+Bias Disclosure 𝐹 (1, 50) = 5.43 0.0238 −0.29 0.126
+Bias Disclosure with Explanation 𝐹 (1, 67) = 0.01 0.9091 −0.01 0.128protected

Joint Intervention (BD) 𝐹 (1, 208) = 73.06 0.0000 ∗ −1.01 0.118
+Expl 𝐹 (1, 227) = 1.51 0.2207 0.11 0.088
+Bias Disclosure 𝐹 (1, 122) = 3.54 0.0623 −0.21 0.114
+Bias and Corr Disclosure 𝐹 (1, 125) = 12.84 0.0005 ∗ −0.42 0.116
+Bias Disclosure with Explanation 𝐹 (1, 178) = 19.84 0.0000 ∗ −0.43 0.096
+Bias and Corr Disclosure with Explanation 𝐹 (1, 178) = 46.57 0.0000 ∗ −0.66 0.096
Joint Intervention (BD) 𝐹 (1, 277) = 6.14 0.0138 ∗ −0.27 0.109

Fairness
Rating

proxy

Joint Intervention (BD+CD) 𝐹 (1, 277) = 13.19 0.0003 ∗ −0.46 0.109
+Expl 𝐹 (1, 115) = 15.83 0.0001 ∗ 0.33 0.083
+Bias Disclosure 𝐹 (1, 50) = 2.33 0.1330 0.10 0.064
+Bias Disclosure with Explanation 𝐹 (1, 67) = 1.19 0.2785 0.07 0.067protected

Joint Intervention (BD) 𝐹 (1, 208) = 72.7 0.0000 ∗ 0.47 0.055
+Expl 𝐹 (1, 227) = 1.21 0.2733 −0.03 0.028
+Bias Disclosure 𝐹 (1, 122) = 0.67 0.4154 0.04 0.050
+Bias and Corr Disclosure 𝐹 (1, 125) = 9.19 0.0030 ∗ 0.16 0.052
+Bias Disclosure with Explanation 𝐹 (1, 182) = 0.62 0.4311 0.03 0.037
+Bias and Corr Disclosure with Explanation 𝐹 (1, 182) = 35.06 0.0000 ∗ 0.22 0.037
Joint Intervention (BD) 𝐹 (1, 277) = 0.58 0.4458 −0.04 0.047

Fairness
Saliency

proxy

Joint Intervention (BD+CD) 𝐹 (1, 277) = 13.42 0.0003 ∗ 0.15 0.048
+Expl 𝐹 (1, 115) = 8.32 0.0047 ∗ −0.13 0.044
+Bias Disclosure 𝐹 (1, 99) = 2.58 0.1117 0.09 0.055
+Bias Disclosure with Explanation 𝐹 (1, 133) = 4.08 0.0455 0.09 0.047protected

Joint Intervention (BD) 𝐹 (1, 208) = 0.06 0.8096 0.01 0.042
+Expl 𝐹 (1, 227) = 8.58 0.0038 ∗ −0.10 0.035
+Bias Disclosure 𝐹 (1, 182) = 0.77 0.3815 0.04 0.050
+Bias and Corr Disclosure 𝐹 (1, 182) = 1.29 0.2574 0.06 0.051
+Bias Disclosure with Explanation 𝐹 (1, 188) = 7.75 0.0059 ∗ 0.10 0.035
+Bias and Corr Disclosure with Explanation 𝐹 (1, 188) = 20.26 0.0000 ∗ 0.16 0.035
Joint Intervention (BD) 𝐹 (1, 277) = 0.78 0.3785 −0.03 0.038

Parity

proxy

Joint Intervention (BD+CD) 𝐹 (1, 277) = 1.01 0.3149 0.03 0.038
(table continues)
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Metric Feature Effect 𝐹 𝑝 Coef Std Error
+Expl 𝐹 (1, 115) = 20.89 0.0000 ∗ 0.04 0.009
+Bias Disclosure 𝐹 (1, 50) = 1.28 0.2630 −0.01 0.009
+Bias Disclosure with Explanation 𝐹 (1, 67) = 0.79 0.3772 −0.01 0.006protected

Joint Intervention (BD) 𝐹 (1, 208) = 3.5 0.0628 0.01 0.007
+Expl 𝐹 (1, 227) = 7.3 0.0074 ∗ 0.02 0.006
+Bias Disclosure 𝐹 (1, 123) = 0.02 0.8846 0.00 0.009
+Bias and Corr Disclosure 𝐹 (1, 126) = 6.66 0.0110 ∗ −0.02 0.010
+Bias Disclosure with Explanation 𝐹 (1, 182) = 9.18 0.0028 ∗ −0.02 0.006
+Bias and Corr Disclosure with Explanation 𝐹 (1, 182) = 10.26 0.0016 ∗ −0.02 0.006
Joint Intervention (BD) 𝐹 (1, 277) = 2.44 0.1197 0.01 0.007

Accuracy

proxy

Joint Intervention (BD+CD) 𝐹 (1, 277) = 0.73 0.3933 0.01 0.007
+Expl 𝐹 (1, 115) = 5.88 0.0169 ∗ 0.07 0.028
+Bias Disclosure 𝐹 (1, 50) = 0.38 0.5426 −0.02 0.026
+Bias Disclosure with Explanation 𝐹 (1, 67) = 7.78 0.0069 ∗ −0.05 0.017protected

Joint Intervention (BD) 𝐹 (1, 208) = 0.05 0.8269 0.00 0.022
+Expl 𝐹 (1, 227) = 3.78 0.0530 0.03 0.017
+Bias Disclosure 𝐹 (1, 113) = 0.48 0.4921 −0.01 0.018
+Bias and Corr Disclosure 𝐹 (1, 115) = 2.95 0.0887 −0.03 0.019
+Bias Disclosure with Explanation 𝐹 (1, 169) = 1.6 0.2073 −0.02 0.014
+Bias and Corr Disclosure with Explanation 𝐹 (1, 169) = 1.65 0.2006 −0.02 0.014
Joint Intervention (BD) 𝐹 (1, 277) = 1.21 0.2722 0.02 0.020

FNR

proxy

Joint Intervention (BD+CD) 𝐹 (1, 277) = 1.39 0.2396 0.03 0.020
+Expl 𝐹 (1, 115) = 9.94 0.0021 ∗ −0.10 0.031
+Bias Disclosure 𝐹 (1, 50) = 2.09 0.1546 0.04 0.028
+Bias Disclosure with Explanation 𝐹 (1, 67) = 8.35 0.0052 ∗ 0.05 0.019protected

Joint Intervention (BD) 𝐹 (1, 208) = 0.17 0.6832 −0.01 0.025
+Expl 𝐹 (1, 227) = 5.45 0.0205 −0.04 0.019
+Bias Disclosure 𝐹 (1, 116) = 1.34 0.2502 0.03 0.024
+Bias and Corr Disclosure 𝐹 (1, 118) = 5.95 0.0162 ∗ 0.06 0.024
+Bias Disclosure with Explanation 𝐹 (1, 169) = 10.79 0.0012 ∗ 0.05 0.017
+Bias and Corr Disclosure with Explanation 𝐹 (1, 169) = 7.44 0.0071 ∗ 0.05 0.017
Joint Intervention (BD) 𝐹 (1, 277) = 0.06 0.8092 −0.01 0.023

FPR

proxy

Joint Intervention (BD+CD) 𝐹 (1, 277) = 0.84 0.3593 −0.02 0.023
(table continues)
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Metric Feature Effect 𝐹 𝑝 Coef Std Error
+Expl 𝐹 (1, 116) = 2.57 0.1117 −0.32 0.199
+Bias Disclosure 𝐹 (1, 50) = 0.39 0.5369 −0.06 0.095protected
+Bias Disclosure with Explanation 𝐹 (1, 67) = 1.06 0.3070 −0.09 0.086
+Expl 𝐹 (1, 228) = 0.0 0.9726 0.00 0.143
+Bias Disclosure 𝐹 (1, 101) = 5.0 0.0276 −0.21 0.095
+Bias and Corr Disclosure 𝐹 (1, 102) = 0.77 0.3838 −0.09 0.098
+Bias Disclosure with Explanation 𝐹 (1, 151) = 0.07 0.7884 0.02 0.085

better

proxy

+Bias and Corr Disclosure with Explanation 𝐹 (1, 151) = 10.12 0.0018 ∗ −0.27 0.085
+Expl 𝐹 (1, 116) = 1.71 0.1933 −0.23 0.176
+Bias Disclosure 𝐹 (1, 50) = 0.04 0.8496 −0.02 0.103protected
+Bias Disclosure with Explanation 𝐹 (1, 67) = 1.2 0.2765 −0.09 0.080
+Expl 𝐹 (1, 228) = 1.41 0.2356 0.16 0.131
+Bias Disclosure 𝐹 (1, 109) = 0.5 0.4798 −0.08 0.106
+Bias and Corr Disclosure 𝐹 (1, 110) = 3.66 0.0583 −0.21 0.109
+Bias Disclosure with Explanation 𝐹 (1, 149) = 13.17 0.0004 ∗ −0.28 0.076

confidence

proxy

+Bias and Corr Disclosure with Explanation 𝐹 (1, 149) = 19.32 0.0000 ∗ −0.33 0.076
+Expl 𝐹 (1, 116) = 0.48 0.4883 0.14 0.204
+Bias Disclosure 𝐹 (1, 50) = 0.0 1.0000 0.00 0.125protected
+Bias Disclosure with Explanation 𝐹 (1, 67) = 0.01 0.9038 −0.01 0.121
+Expl 𝐹 (1, 228) = 18.55 0.0000 ∗ 0.69 0.161
+Bias Disclosure 𝐹 (1, 103) = 0.05 0.8298 0.02 0.110
+Bias and Corr Disclosure 𝐹 (1, 103) = 6.39 0.0130 ∗ 0.29 0.113
+Bias Disclosure with Explanation 𝐹 (1, 156) = 0.2 0.6559 0.05 0.110

predictable

proxy

+Bias and Corr Disclosure with Explanation 𝐹 (1, 156) = 1.22 0.2716 −0.12 0.110
+Expl 𝐹 (1, 116) = 0.03 0.8677 0.03 0.176
+Bias Disclosure 𝐹 (1, 50) = 1.69 0.1997 −0.10 0.075protected
+Bias Disclosure with Explanation 𝐹 (1, 67) = 2.96 0.0898 −0.18 0.103
+Expl 𝐹 (1, 228) = 4.17 0.0422 0.24 0.119
+Bias Disclosure 𝐹 (1, 107) = 0.08 0.7787 0.03 0.099
+Bias and Corr Disclosure 𝐹 (1, 108) = 0.01 0.9419 −0.01 0.102
+Bias Disclosure with Explanation 𝐹 (1, 158) = 3.27 0.0727 −0.17 0.092

safe

proxy

+Bias and Corr Disclosure with Explanation 𝐹 (1, 158) = 7.76 0.0060 ∗ −0.25 0.092
+Expl 𝐹 (1, 116) = 0.12 0.7283 0.06 0.183
+Bias Disclosure 𝐹 (1, 50) = 0.0 1.0000 0.00 0.097protected
+Bias Disclosure with Explanation 𝐹 (1, 67) = 1.6 0.2100 0.13 0.105
+Expl 𝐹 (1, 228) = 0.0 0.9621 0.01 0.118
+Bias Disclosure 𝐹 (1, 113) = 4.48 0.0365 0.24 0.114
+Bias and Corr Disclosure 𝐹 (1, 115) = 1.05 0.3066 0.12 0.117
+Bias Disclosure with Explanation 𝐹 (1, 153) = 2.69 0.1030 0.13 0.080

wary

proxy

+Bias and Corr Disclosure with Explanation 𝐹 (1, 153) = 13.28 0.0004 ∗ 0.29 0.080
+Expl 𝐹 (1, 116) = 6.0 0.0158 ∗ −0.38 0.154
+Bias Disclosure 𝐹 (1, 50) = 1.5 0.2265 −0.14 0.112protected
+Bias Disclosure with Explanation 𝐹 (1, 67) = 2.56 0.1145 −0.15 0.092
+Expl 𝐹 (1, 228) = 0.06 0.8122 0.03 0.138
+Bias Disclosure 𝐹 (1, 105) = 4.43 0.0376 −0.22 0.104
+Bias and Corr Disclosure 𝐹 (1, 106) = 14.58 0.0002 ∗ −0.41 0.107
+Bias Disclosure with Explanation 𝐹 (1, 153) = 5.43 0.0211 −0.20 0.088

works

proxy

+Bias and Corr Disclosure with Explanation 𝐹 (1, 153) = 14.19 0.0002 ∗ −0.33 0.088
Table 6: Overall results of tests regarding the primary effects of our study on fairness perceptions, decision-making fairness,
decision-making quality, and learned trust.
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C HUMAN STUDY INTERFACE

Figure 8: Example task question without explanations.

Figure 9: Example attention check question.

Figure 10: Bias disclosure showing the demographic parity of the model in phase 1.
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Figure 11: Correlation disclosure showing the relationship between university and gender in our synthetic data.

Figure 12: In proxy conditions where participants are not given correlation disclosure. They are instead given this screen
explaining that proxies can general, without mentioning the relationship in our data.

Figure 13: Comprehension check screen testing both understanding of bias disclosure (Figure 10) and correlation disclosure
(Figure 11). The correlation disclosure question is only shown in proxy conditions where the participants are given correlation
disclosure.
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Figure 14: Initial trust survey given before the task is introduced.
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Figure 15: Example post-task survey. This is the version that is shown after phase 2 of proxy conditions. In protected conditions
and after phase 1 of proxy conditions, the question about which feature might have lead to gender bias is omitted.
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Figure 16: Participant demographic questions.
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